Discontinuous parameter estimates with least squares estimators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous parameter estimates with least squares estimators

We discuss weighted least squares estimates of ill-conditioned linear inverse problems where weights are chosen to be inverse error covariance matrices. Least squares estimators are the maximum likelihood estimate for normally distributed data and parameters, but here we do not assume particular probability distributions. Weights for the estimator are found by ensuring its minimum follows a χ d...

متن کامل

Mixing Least - Squares Estimators

We propose a procedure to handle the problem of Gaussian regression when the variance is unknown. We mix least-squares estimators from various models according to a procedure inspired by that of Leung and Barron [17]. We show that in some cases the resulting estimator is a simple shrinkage estimator. We then apply this procedure in various statistical settings such as linear regression or adapt...

متن کامل

Reversals of Least-Squares Estimates

An adjusted estimate may be opposite the original estimate. This paper presents necessary and sufficient conditions for such a reversal, in the context of linear modeling, where adjustment is obtained through considering additional explanatory data associated with lurking variables.

متن کامل

Asymptotic Least Squares Estimators for Dynamic Games1

This paper considers the estimation problem in dynamic games with finite actions. We derive the equation system that characterizes the Markovian equilibria. The equilibrium equation system enables us to characterize conditions for identification. We consider a class of asymptotic least squares estimators defined by the equilibrium conditions. This class provides a unified framework for a number...

متن کامل

H∞ bounds for least-squares estimators

In this paper we obtain upper and lower bounds for the H 1 norm of the Kalman lter and RLS algorithm, with respect to prediction and ltered errors. These bounds can be used to study the robustness properties of such estimators. One main conclusion is that, unlike H 1-optimal estimators which do not allow for any ampliication of the disturbances, the least-squares estimators do allow for such am...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2013

ISSN: 0096-3003

DOI: 10.1016/j.amc.2012.11.067